Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 28
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Front Immunol ; 15: 1135490, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38410512

RESUMO

Complement is an ancient and complex network of the immune system and, as such, it plays vital physiological roles, but it is also involved in numerous pathological processes. The proper regulation of the complement system is important to allow its sufficient and targeted activity without deleterious side-effects. Factor H is a major complement regulator, and together with its splice variant factor H-like protein 1 and the five human factor H-related (FHR) proteins, they have been linked to various diseases. The role of factor H in inhibiting complement activation is well studied, but the function of the FHRs is less characterized. Current evidence supports the main role of the FHRs as enhancers of complement activation and opsonization, i.e., counter-balancing the inhibitory effect of factor H. FHRs emerge as soluble pattern recognition molecules and positive regulators of the complement system. In addition, factor H and some of the FHR proteins were shown to modulate the activity of immune cells, a non-canonical function outside the complement cascade. Recent efforts have intensified to study factor H and the FHRs and develop new tools for the distinction, quantification and functional characterization of members of this protein family. Here, we provide an update and overview on the versatile roles of factor H family proteins, what we know about their biological functions in healthy conditions and in diseases.


Assuntos
Fator H do Complemento , Proteínas do Sistema Complemento , Humanos , Fator H do Complemento/metabolismo , Ativação do Complemento
2.
Front Immunol ; 14: 1113015, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-36891314

RESUMO

Rheumatoid arthritis (RA) is a chronic inflammatory autoimmune disorder affecting the joints. Many patients carry anti-citrullinated protein autoantibodies (ACPA). Overactivation of the complement system seems to be part of the pathogenesis of RA, and autoantibodies against the pathway initiators C1q and MBL, and the regulator of the complement alternative pathway, factor H (FH), were previously reported. Our aim was to analyze the presence and role of autoantibodies against complement proteins in a Hungarian RA cohort. To this end, serum samples of 97 ACPA-positive RA patients and 117 healthy controls were analyzed for autoantibodies against FH, factor B (FB), C3b, C3-convertase (C3bBbP), C1q, MBL and factor I. In this cohort, we did not detect any patient with FH autoantibodies but detected C1q autoantibodies in four patients, MBL autoantibodies in two patients and FB autoantibodies in five patients. Since the latter autoantibodies were previously reported in patients with kidney diseases but not in RA, we set out to further characterize such FB autoantibodies. The isotypes of the analyzed autoantibodies were IgG2, IgG3, IgGκ, IgGλ and their binding site was localized in the Bb part of FB. We detected in vivo formed FB-autoanti-FB complexes by Western blot. The effect of the autoantibodies on the formation, activity and FH-mediated decay of the C3 convertase in solid phase convertase assays was determined. In order to investigate the effect of the autoantibodies on complement functions, hemolysis assays and fluid phase complement activation assays were performed. The autoantibodies partially inhibited the complement-mediated hemolysis of rabbit red blood cells, inhibited the activity of the solid phase C3-convertase and C3 and C5b-9 deposition on complement activating surfaces. In summary, in ACPA-positive RA patients we identified FB autoantibodies. The characterized FB autoantibodies did not enhance complement activation, rather, they had inhibitory effect on complement. These results support the involvement of the complement system in the pathomechanism of RA and raise the possibility that protective autoantibodies may be generated in some patients against the alternative pathway C3 convertase. However, further analyses are needed to assess the exact role of such autoantibodies.


Assuntos
Artrite Reumatoide , Fator B do Complemento , Animais , Coelhos , Autoanticorpos , Hemólise , Complemento C1q , Convertases de Complemento C3-C5/metabolismo
3.
Mol Immunol ; 151: 52-60, 2022 11.
Artigo em Inglês | MEDLINE | ID: mdl-36084516

RESUMO

The complement system is recognized as a major pathogenic or contributing factor in an ever-growing number of diseases. In addition to inherited factors, autoantibodies to complement proteins have been detected in various systemic and organ-specific disorders. These include antibodies directed against complement components, regulators and receptors, but also protein complexes such as autoantibodies against complement convertases. In some cases, the autoantibodies are relatively well characterized and a pathogenic role is incurred and their detection has diagnostic value. In other cases, the relevance of the autoantibodies is rather unclear. This review summarizes what we know of complement specific autoantibodies in diseases and identifies unresolved questions regarding their functional effect and relevance.


Assuntos
Autoanticorpos , Proteínas do Sistema Complemento , Ativação do Complemento
4.
J Biol Chem ; 298(7): 102113, 2022 07.
Artigo em Inglês | MEDLINE | ID: mdl-35690144

RESUMO

Complement component C1q is a protein complex of the innate immune system with well-characterized binding partners that constitutes part of the classical complement pathway. In addition, C1q was recently described in the central nervous system as having a role in synapse elimination both in the healthy brain and in neurodegenerative diseases. However, the molecular mechanism of C1q-associated synapse phagocytosis is still unclear. Here, we designed monomer and multimer protein constructs, which comprised the globular interaction recognition parts of mouse C1q (globular part of C1q [gC1q]) as single-chain molecules (sc-gC1q proteins) lacking the collagen-like effector region. These molecules, which can competitively inhibit the function of C1q, were expressed in an Escherichia coli expression system, and their structure and capabilities to bind known complement pathway activators were validated by mass spectrometry, analytical size-exclusion chromatography, analytical ultracentrifugation, CD spectroscopy, and ELISA. We further characterized the interactions between these molecules and immunoglobulins and neuronal pentraxins using surface plasmon resonance spectroscopy. We demonstrated that sc-gC1qs potently inhibited the function of C1q. Furthermore, these sc-gC1qs competed with C1q in binding to the embryonal neuronal cell membrane. We conclude that the application of sc-gC1qs can reveal neuronal localization and functions of C1q in assays in vivo and might serve as a basis for engineering inhibitors for therapeutic purposes.


Assuntos
Complemento C1q , Via Clássica do Complemento , Animais , Ensaio de Imunoadsorção Enzimática , Camundongos
5.
Front Immunol ; 13: 845953, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35392081

RESUMO

Components of the extracellular matrix (ECM), when exposed to body fluids may promote local complement activation and inflammation. Pathologic complement activation at the glomerular basement membrane and at the Bruch's membrane is implicated in renal and eye diseases, respectively. Binding of soluble complement inhibitors to the ECM, including factor H (FH), is important to prevent excessive complement activation. Since the FH-related (FHR) proteins FHR1 and FHR5 are also implicated in these diseases, our aim was to study whether these FHRs can also bind to ECM components and affect local FH activity and complement activation. Both FH and the FHRs showed variable binding to ECM components. We identified laminin, fibromodulin, osteoadherin and PRELP as ligands of FHR1 and FHR5, and found that FHR1 bound to these ECM components through its C-terminal complement control protein (CCP) domains 4-5, whereas FHR5 bound via its middle region, CCPs 3-7. Aggrecan, biglycan and decorin did not bind FH, FHR1 and FHR5. FHR5 also bound to immobilized C3b, a model of surface-deposited C3b, via CCPs 3-7. By contrast, soluble C3, C3(H2O), and the C3 fragments C3b, iC3b and C3d bound to CCPs 8-9 of FHR5. Properdin, which was previously described to bind via CCPs 1-2 to FHR5, did not bind in its physiologically occurring serum forms in our assays. FHR1 and FHR5 inhibited the binding of FH to the identified ECM proteins in a dose-dependent manner, which resulted in reduced FH cofactor activity. Moreover, both FHR1 and FHR5 enhanced alternative complement pathway activation on immobilized ECM proteins when exposed to human serum, resulting in the increased deposition of C3-fragments, factor B and C5b-9. Thus, our results identify novel ECM ligands of FH family proteins and indicate that FHR1 and FHR5 are competitive inhibitors of FH on ECM and, when bound to these ligands, they may enhance local complement activation and promote inflammation under pathological conditions.


Assuntos
Ativação do Complemento , Proteínas Inativadoras do Complemento C3b , Fator H do Complemento , Proteínas do Sistema Complemento , Proteínas Inativadoras do Complemento C3b/metabolismo , Proteínas do Sistema Complemento/metabolismo , Matriz Extracelular , Humanos , Inflamação , Ligantes
6.
Front Immunol ; 12: 720183, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34566977

RESUMO

Background: Factor H-related protein 5 (FHR-5) is a member of the complement Factor H protein family. Due to the homology to Factor H, the main complement regulator of the alternative pathway, it may also be implicated in the pathomechanism of kidney diseases where Factor H and alternative pathway dysregulation play a role. Here, we report the first observational study on CFHR5 variations along with serum FHR-5 levels in immune complex-mediated membranoproliferative glomerulonephritis (IC-MPGN) and C3 glomerulopathy (C3G) patients together with the clinical, genetic, complement, and follow-up data. Methods: A total of 120 patients with a histologically proven diagnosis of IC-MPGN/C3G were enrolled in the study. FHR-5 serum levels were measured in ELISA, the CFHR5 gene was analyzed by Sanger sequencing, and selected variants were studied as recombinant proteins in ELISA and surface plasmon resonance (SPR). Results: Eight exonic CFHR5 variations in 14 patients (12.6%) were observed. Serum FHR-5 levels were lower in patients compared to controls. Low serum FHR-5 concentration at presentation associated with better renal survival during the follow-up period; furthermore, it showed clear association with signs of complement overactivation and clinically meaningful clusters. Conclusions: Our observations raise the possibility that the FHR-5 protein plays a fine-tuning role in the pathogenesis of IC-MPGN/C3G.


Assuntos
Complexo Antígeno-Anticorpo/imunologia , Biomarcadores , Complemento C3/imunologia , Proteínas do Sistema Complemento/genética , Proteínas do Sistema Complemento/metabolismo , Variação Genética , Glomerulonefrite Membranoproliferativa/sangue , Glomerulonefrite Membranoproliferativa/etiologia , Adolescente , Adulto , Alelos , Estudos de Casos e Controles , Ativação do Complemento , Gerenciamento Clínico , Suscetibilidade a Doenças , Ensaio de Imunoadsorção Enzimática , Feminino , Predisposição Genética para Doença , Glomerulonefrite Membranoproliferativa/diagnóstico , Glomerulonefrite Membranoproliferativa/mortalidade , Humanos , Testes de Função Renal , Masculino , Polimorfismo de Nucleotídeo Único , Prognóstico , Curva ROC , Avaliação de Sintomas , Adulto Jovem
7.
Front Immunol ; 12: 642860, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33995361

RESUMO

Cytokine storm (CS), an excessive release of proinflammatory cytokines upon overactivation of the innate immune system, came recently to the focus of interest because of its role in the life-threatening consequences of certain immune therapies and viral diseases, including CAR-T cell therapy and Covid-19. Because complement activation with subsequent anaphylatoxin release is in the core of innate immune stimulation, studying the relationship between complement activation and cytokine release in an in vitro CS model holds promise to better understand CS and identify new therapies against it. We used peripheral blood mononuclear cells (PBMCs) cultured in the presence of autologous serum to test the impact of complement activation and inhibition on cytokine release, testing the effects of liposomal amphotericin B (AmBisome), zymosan and bacterial lipopolysaccharide (LPS) as immune activators and heat inactivation of serum, EDTA and mini-factor H (mfH) as complement inhibitors. These activators induced significant rises of complement activation markers C3a, C4a, C5a, Ba, Bb, and sC5b-9 at 45 min of incubation, with or without ~5- to ~2,000-fold rises of IL-1α, IL-1ß, IL-5, IL-6, IL-7, IL-8, IL-10, IL-12, IL-13 and TNFα at 6 and 18 h later. Inhibition of complement activation by the mentioned three methods had differential inhibition, or even stimulation of certain cytokines, among which effects a limited suppressive effect of mfH on IL-6 secretion and significant stimulation of IL-10 implies anti-CS and anti-inflammatory impacts. These findings suggest the utility of the model for in vitro studies on CS, and the potential clinical use of mfH against CS.


Assuntos
COVID-19/imunologia , Ativação do Complemento , Síndrome da Liberação de Citocina/imunologia , Interleucina-10/imunologia , Interleucina-6/imunologia , Leucócitos Mononucleares/imunologia , Modelos Imunológicos , SARS-CoV-2/imunologia , COVID-19/patologia , Fator H do Complemento/imunologia , Síndrome da Liberação de Citocina/patologia , Humanos , Leucócitos Mononucleares/patologia , Leucócitos Mononucleares/virologia
8.
Front Immunol ; 12: 660382, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33986750

RESUMO

Neuromyelitis optica spectrum disorder (NMOSD) is an autoimmune inflammatory disease of the central nervous system (CNS), characterized by pathogenic, complement-activating autoantibodies against the main water channel in the CNS, aquaporin 4 (AQP4). NMOSD is frequently associated with additional autoantibodies and antibody-mediated diseases. Because the alternative pathway amplifies complement activation, our aim was to evaluate the presence of autoantibodies against the alternative pathway C3 convertase, its components C3b and factor B, and the complement regulator factor H (FH) in NMOSD. Four out of 45 AQP4-seropositive NMOSD patients (~9%) had FH autoantibodies in serum and none had antibodies to C3b, factor B and C3bBb. The FH autoantibody titers were low in three and high in one of the patients, and the avidity indexes were low. FH-IgG complexes were detected in the purified IgG fractions by Western blot. The autoantibodies bound to FH domains 19-20, and also recognized the homologous FH-related protein 1 (FHR-1), similar to FH autoantibodies associated with atypical hemolytic uremic syndrome (aHUS). However, in contrast to the majority of autoantibody-positive aHUS patients, these four NMOSD patients did not lack FHR-1. Analysis of autoantibody binding to FH19-20 mutants and linear synthetic peptides of the C-terminal FH and FHR-1 domains, as well as reduced FH, revealed differences in the exact binding sites of the autoantibodies. Importantly, all four autoantibodies inhibited C3b binding to FH. In conclusion, our results demonstrate that FH autoantibodies are not uncommon in NMOSD and suggest that generation of antibodies against complement regulating factors among other autoantibodies may contribute to the complement-mediated damage in NMOSD.


Assuntos
Autoanticorpos/sangue , Fator H do Complemento/imunologia , Neuromielite Óptica/sangue , Neuromielite Óptica/imunologia , Adulto , Proteínas Sanguíneas/genética , Complemento C3b/metabolismo , Fator H do Complemento/metabolismo , Mapeamento de Epitopos , Humanos , Imunoglobulina G/sangue , Imunoglobulina G/imunologia , Pessoa de Meia-Idade , Neuromielite Óptica/fisiopatologia , Adulto Jovem
9.
Methods Mol Biol ; 2227: 141-145, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33847939

RESUMO

Antibodies to autoantigens are implicated in a large number of diseases. Such autoantibodies may cause pathological activation of complement, an ancient humoral recognition and effector system of innate immunity; in addition, complement components or regulators may be target of autoantibodies and cause abnormal complement activation or function. Autoantibodies to complement proteins are in particular involved in kidney diseases. Those binding to complement convertase enzymes can cause enhanced stability of convertases and their increased resistance to regulation, thus promoting complement turnover. Here, we describe an ELISA method to detect factor B autoantibodies that bind to and stabilize the alternative complement pathway C3 convertase enzyme, C3bBb.


Assuntos
Autoanticorpos/análise , Fator B do Complemento/imunologia , Autoanticorpos/sangue , C3 Convertase da Via Alternativa do Complemento/imunologia , Fator Nefrítico do Complemento 3/imunologia , Convertases de Complemento C3-C5/imunologia , Ensaio de Imunoadsorção Enzimática/métodos , Glomerulonefrite/sangue , Glomerulonefrite/diagnóstico , Glomerulonefrite/imunologia , Humanos
10.
Front Immunol ; 11: 1297, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32765490

RESUMO

Complement plays an essential role in the opsonophagocytic clearance of apoptotic/necrotic cells. Dysregulation of this process may lead to inflammatory and autoimmune diseases. Factor H (FH), a major soluble complement inhibitor, binds to dead cells and inhibits excessive complement activation on their surface, preventing lysis, and the release of intracellular material, including DNA. The FH-related (FHR) proteins share common ligands with FH, due to their homology with this complement regulator, but they lack the domains that mediate the complement inhibitory activity of FH. Because their roles in complement regulation is controversial and incompletely understood, we studied the interaction of FHR-1 and FHR-5 with DNA and dead cells and investigated whether they influence the regulatory role of FH and the complement activation on DNA and dead cells. FH, FHR-1, and FHR-5 bound to both plasmid DNA and human genomic DNA, where both FHR proteins inhibited FH-DNA interaction. The FH cofactor activity was inhibited by FHR-1 and FHR-5 due to the reduced binding of FH to DNA in the presence of the FHRs. Both FHRs caused increased complement activation on DNA. FHR-1 and FHR-5 bound to late apoptotic and necrotic cells and recruited monomeric C-reactive protein and pentraxin 3, and vice versa. Interactions of the FHRs with pentraxins resulted in enhanced activation of both the classical and the alternative complement pathways on dead cells when exposed to human serum. Altogether, our results demonstrate that FHR-1 and FHR-5 are competitive inhibitors of FH on DNA; moreover, FHR-pentraxin interactions promote opsonization of dead cells.


Assuntos
Proteínas Inativadoras do Complemento C3b/metabolismo , Proteínas do Sistema Complemento/metabolismo , DNA/metabolismo , Apoptose/imunologia , Morte Celular/genética , Morte Celular/imunologia , Linhagem Celular Tumoral , Ativação do Complemento , Proteínas do Sistema Complemento/imunologia , Células Endoteliais , Armadilhas Extracelulares/genética , Armadilhas Extracelulares/imunologia , Citometria de Fluxo , Humanos , Necrose/imunologia , Ligação Proteica
11.
Semin Immunol ; 45: 101341, 2019 10.
Artigo em Inglês | MEDLINE | ID: mdl-31757608

RESUMO

The complement system, while being an essential and very efficient effector component of innate immunity, may cause damage to the host and result in various inflammatory, autoimmune and infectious diseases or cancer, when it is improperly activated or regulated. Factor H is a serum glycoprotein and the main regulator of the activity of the alternative complement pathway. Factor H, together with its splice variant factor H-like protein 1 (FHL-1), inhibits complement activation at the level of the central complement component C3 and beyond. In humans, there are also five factor H-related (FHR) proteins, whose function is poorly characterized. While data indicate complement inhibiting activity for some of the FHRs, there is increasing evidence that FHRs have an opposite role compared with factor H and FHL-1, namely, they enhance complement activation directly and also by competing with the regulators FH and FHL-1. This review summarizes the current stand and recent data on the roles of factor H family proteins in health and disease, with focus on the function of FHR proteins.


Assuntos
Proteínas Sanguíneas/metabolismo , Proteínas de Transporte/metabolismo , Ativação do Complemento/imunologia , Fator H do Complemento/imunologia , Fator H do Complemento/metabolismo , Animais , Proteínas Sanguíneas/química , Proteínas Sanguíneas/genética , Proteínas de Transporte/química , Proteínas de Transporte/genética , Fator H do Complemento/química , Proteínas do Sistema Complemento/imunologia , Proteínas do Sistema Complemento/metabolismo , Suscetibilidade a Doenças , Humanos , Imunomodulação , Ligantes , Família Multigênica , Ligação Proteica , Relação Estrutura-Atividade
12.
Front Immunol ; 8: 1145, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-28974948

RESUMO

Factor H-related (FHR) proteins consist of varying number of complement control protein domains that display various degrees of sequence identity to respective domains of the alternative pathway complement inhibitor factor H (FH). While such FHR proteins are described in several species, only human FHRs were functionally investigated. Their biological role is still poorly understood and in part controversial. Recent studies on some of the human FHRs strongly suggest a role for FHRs in enhancing complement activation via competing with FH for binding to certain ligands and surfaces. The aim of the current study was the functional characterization of a murine FHR, FHR-B. To this end, FHR-B was expressed in recombinant form. Recombinant FHR-B bound to human C3b and was able to compete with human FH for C3b binding. FHR-B supported the assembly of functionally active C3bBb alternative pathway C3 convertase via its interaction with C3b. This activity was confirmed by demonstrating C3 activation in murine serum. In addition, FHR-B bound to murine pentraxin 3 (PTX3), and this interaction resulted in murine C3 fragment deposition due to enhanced complement activation in mouse serum. FHR-B also induced C3 deposition on C-reactive protein, the extracellular matrix (ECM) extract Matrigel, and endothelial cell-derived ECM when exposed to mouse serum. Moreover, mouse C3 deposition was strongly enhanced on necrotic Jurkat T cells and the mouse B cell line A20 by FHR-B. FHR-B also induced lysis of sheep erythrocytes when incubated in mouse serum with FHR-B added in excess. Altogether, these data demonstrate that, similar to human FHR-1 and FHR-5, mouse FHR-B modulates complement activity by promoting complement activation via interaction with C3b and via competition with murine FH.

13.
Immunol Lett ; 189: 73-81, 2017 09.
Artigo em Inglês | MEDLINE | ID: mdl-28577901

RESUMO

The expression and role of CR3 (CD11b/CD18) and CR4 (CD11c/CD18) in B cells are not yet explored in contrast to myeloid cells, where these ß2-integrin type receptors are known to participate in various cellular functions, including phagocytosis, adherence and migration. Here we aimed to reveal the expression and role of CR3 and CR4 in human B cells. In B cells of healthy donors CR3 and CR4 are scarcely expressed. However, two patients with chronic lymphocytic leukemia (CLL) characterized by a peculiar immune-phenotype containing both CD5-positive and CD5-negative B cell populations made possible to study these molecules in distinct B cell subsets. We found that CD11b and CD11c were expressed on both CD5-positive and CD5-negative B cells, albeit to different extents. Our data suggest that these receptors are involved in spreading, since this activity of CpG-activated B cells on fibrinogen could be partially blocked by monoclonal antibodies specific for CD11b or CD11c. CpG-stimulation lead to proliferation of both CD5-positive and CD5-negative B cells of the patients with a less pronounced effect on the CD5-positive cells. In contrast to normal B cells, CLL B cells of both patients reacted to CpG-stimulation with robust IL-10 production. The concomitant, suboptimal stimulus via the BCR and TLR9 exerted either a synergistic enhancing effect or resulted in inhibition of proliferation and IL-10 production of patients' B cells. Our data obtained studying B cells of leukemic patients point to the role of CR3 and probably CR4 in the interaction of tumor cells with the microenvironment and suggest the involvement of IL-10 producing B cells in the pathologic process.


Assuntos
Linfócitos B/fisiologia , Integrina alfaXbeta2/metabolismo , Leucemia Linfocítica Crônica de Células B/imunologia , Antígeno de Macrófago 1/metabolismo , Receptores de Antígenos de Linfócitos B/metabolismo , Idoso , Antígenos CD18/química , Antígenos CD18/metabolismo , Antígenos CD5/metabolismo , Células Cultivadas , Feminino , Regulação da Expressão Gênica , Humanos , Integrina alfaXbeta2/química , Interleucina-10/metabolismo , Antígeno de Macrófago 1/química , Receptor Toll-Like 9/metabolismo , Microambiente Tumoral
14.
J Immunol ; 199(1): 292-303, 2017 07 01.
Artigo em Inglês | MEDLINE | ID: mdl-28533443

RESUMO

Factor H-related protein (FHR) 1 is one of the five human FHRs that share sequence and structural homology with the alternative pathway complement inhibitor FH. Genetic studies on disease associations and functional analyses indicate that FHR-1 enhances complement activation by competitive inhibition of FH binding to some surfaces and immune proteins. We have recently shown that FHR-1 binds to pentraxin 3. In this study, our aim was to investigate whether FHR-1 binds to another pentraxin, C-reactive protein (CRP), analyze the functional relevance of this interaction, and study the role of FHR-1 in complement activation and regulation. FHR-1 did not bind to native, pentameric CRP, but it bound strongly to monomeric CRP via its C-terminal domains. FHR-1 at high concentration competed with FH for CRP binding, indicating possible complement deregulation also on this ligand. FHR-1 did not inhibit regulation of solid-phase C3 convertase by FH and did not inhibit terminal complement complex formation induced by zymosan. On the contrary, by binding C3b, FHR-1 allowed C3 convertase formation and thereby enhanced complement activation. FHR-1/CRP interactions increased complement activation via the classical and alternative pathways on surfaces such as the extracellular matrix and necrotic cells. Altogether, these results identify CRP as a ligand for FHR-1 and suggest that FHR-1 enhances, rather than inhibits, complement activation, which may explain the protective effect of FHR-1 deficiency in age-related macular degeneration.


Assuntos
Proteína C-Reativa/imunologia , Proteína C-Reativa/metabolismo , Ativação do Complemento , Proteínas Inativadoras do Complemento C3b/imunologia , Proteínas Inativadoras do Complemento C3b/metabolismo , Sítios de Ligação , Proteína C-Reativa/química , Proteína C-Reativa/farmacologia , Convertases de Complemento C3-C5 , Complemento C3b/imunologia , Complemento C3b/farmacologia , Proteínas Inativadoras do Complemento C3b/farmacologia , Fator H do Complemento , Matriz Extracelular/efeitos dos fármacos , Matriz Extracelular/imunologia , Células Endoteliais da Veia Umbilical Humana/efeitos dos fármacos , Células Endoteliais da Veia Umbilical Humana/imunologia , Humanos , Ligantes , Degeneração Macular/imunologia , Ligação Proteica , Componente Amiloide P Sérico/imunologia , Componente Amiloide P Sérico/metabolismo
15.
Front Immunol ; 8: 1800, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-29321782

RESUMO

Dysregulation of the complement alternative pathway is involved in the pathogenesis of several diseases, including the kidney diseases atypical hemolytic uremic syndrome (aHUS) and C3 glomerulopathy (C3G). In a patient, initially diagnosed with chronic glomerulonephritis, possibly C3G, and who 6 years later had an episode of aHUS, a heterozygous missense mutation leading to a tryptophan to arginine exchange (W198R) in the factor H (FH) complement control protein (CCP) 3 domain has previously been identified. The aim of this study was to clarify the functional relevance of this mutation. To this end, wild-type (FH1-4WT) and mutant (FH1-4W198R) CCPs 1-4 of FH were expressed as recombinant proteins. The FH1-4W198R mutant showed decreased C3b binding compared with FH1-4WT. FH1-4W198R had reduced cofactor and decay accelerating activity compared with the wild-type protein. Hemolysis assays demonstrated impaired capacity of FH1-4W198R to protect rabbit erythrocytes from human complement-mediated lysis, and also to prevent lysis of sheep erythrocytes in human serum induced by a monoclonal antibody binding in FH CCP5 domain, compared with that of FH1-4WT. Thus, the FH W198R exchange results in impaired complement alternative pathway regulation. The heterozygous nature of this mutation in the index patient may explain the manifestation of two diseases, likely due to different triggers leading to complement dysregulation in plasma or on cell surfaces.

16.
Nanomedicine ; 12(4): 1023-1031, 2016 May.
Artigo em Inglês | MEDLINE | ID: mdl-26733258

RESUMO

Hypersensitivity reactions to particulate drugs can partly be caused by complement activation and represent a major complication during intravenous application of nanomedicines. Several liposomal and micellar drugs and carriers, and therapeutic antibodies, were shown to activate complement and induce complement activation-related pseudoallergy (CARPA) in model animals. To explore the possible use of the natural complement inhibitor factor H (FH) against CARPA, we examined the effect of FH on complement activation induced by CARPAgenic drugs. Exogenous FH inhibited complement activation induced by the antifungal liposomal Amphotericin-B (AmBisome), the widely used solvent of anticancer drugs Cremophor EL, and the anticancer monoclonal antibody rituximab in vitro. An engineered form of FH (mini-FH) was more potent inhibitor of Ambisome-, Cremophor EL- and rituximab-induced complement activation than FH. The FH-related protein CFHR1 had no inhibitory effect. Our data suggest that FH or its derivatives may be considered in the pharmacological prevention of CARPA. FROM THE CLINICAL EDITOR: Although liposomes and micelles are already in use in the clinical setting as drug carriers, there remains the potential problem of hypersensitivity due to complement activation. In this article, the authors investigated the use of complement inhibitor factor H (FH) on complement activation and showed good efficacy. The results would therefore suggest the potential application of complement inhibitor in the future.


Assuntos
Ativação do Complemento/efeitos dos fármacos , Fator H do Complemento/administração & dosagem , Hipersensibilidade a Drogas/tratamento farmacológico , Lipossomos/efeitos adversos , Ativação do Complemento/imunologia , Fator H do Complemento/imunologia , Portadores de Fármacos/efeitos adversos , Hipersensibilidade a Drogas/imunologia , Hipersensibilidade a Drogas/patologia , Voluntários Saudáveis , Humanos , Micelas , Nanomedicina , Neoplasias/tratamento farmacológico , Neoplasias/imunologia , Rituximab/efeitos adversos
17.
Immunobiology ; 221(4): 503-11, 2016 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-26792457

RESUMO

Paroxysmal nocturnal hemoglobinuria (PNH) is characterized by complement-mediated cell lysis due to deficiency of GPI-anchored complement regulators. Blockage of the lytic pathway by eculizumab is the only available therapy for PNH patients and shows remarkable benefits, but regularly yields PNH erythrocytes opsonized with fragments of complement protein C3, rendering such erythrocytes prone to extravascular hemolysis. This effect is associated with insufficient responsiveness seen in a subgroup of PNH patients. Novel C3-opsonin targeted complement inhibitors act earlier in the cascade, at the level of activated C3 and are engineered from parts of the natural complement regulator Factor H (FH) or complement receptor 2 (CR2). This inhibitor class comprises three variants of "miniFH" and the clinically developed "FH-CR2" fusion-protein (TT30). We show that the approach of FH-CR2 to target C3-opsonins was more efficient in preventing complement activation induced by foreign surfaces, whereas the miniFH variants were substantially more active in controlling complement on PNH erythrocytes. Subtle differences were noted in the ability of each version of miniFH to protect human PNH cells. Importantly, miniFH and FH-CR2 interfered only minimally with complement-mediated serum killing of bacteria when compared to untargeted inhibition of all complement pathways by eculizumab. Thus, the molecular design of each C3-opsonin targeted complement inhibitor determines its potency in respect to the nature of the activator/surface providing potential functionality in PNH.


Assuntos
Anticorpos Monoclonais Humanizados/farmacologia , Complemento C3/genética , Inativadores do Complemento/farmacologia , Eritrócitos/efeitos dos fármacos , Proteínas Opsonizantes/genética , Animais , Anticorpos Monoclonais Humanizados/biossíntese , Anticorpos Monoclonais Humanizados/imunologia , Células Cultivadas , Ativação do Complemento/efeitos dos fármacos , Fator H do Complemento/genética , Fator H do Complemento/imunologia , Inativadores do Complemento/imunologia , Inativadores do Complemento/metabolismo , Via Alternativa do Complemento , Eritrócitos/imunologia , Eritrócitos/patologia , Escherichia coli/efeitos dos fármacos , Escherichia coli/crescimento & desenvolvimento , Expressão Gênica , Hemoglobinúria Paroxística/tratamento farmacológico , Hemoglobinúria Paroxística/genética , Hemoglobinúria Paroxística/metabolismo , Hemoglobinúria Paroxística/patologia , Hemólise/efeitos dos fármacos , Humanos , Terapia de Alvo Molecular , Engenharia de Proteínas , Coelhos , Receptores de Complemento 3d/genética , Receptores de Complemento 3d/imunologia , Proteínas Recombinantes de Fusão/genética , Proteínas Recombinantes de Fusão/imunologia
18.
Mol Immunol ; 70: 47-55, 2016 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-26703217

RESUMO

Factor H (FH) autoantibodies are present in 6-10% of atypical hemolytic uremic syndrome (aHUS) patients, most of whom have homozygous deficiency of the FH-related protein FHR-1. Although the pathogenic role of the autoantibodies is established, little is known about their molecular characteristics and changes over time. Here, we describe the specificity and other immunological features of anti-FH autoantibodies in the Spanish and Hungarian aHUS cohorts. A total of 19 patients were included and serial samples of 14 of them were available. FH autoantibodies from FHR-1 deficient patients (n=13) mainly recognized FH, its SCR19-20 fragment and FHR-1, but autoantibody specificity in patients who are homo- or heterozygous for the CFHR1 gene (n=6) was heterogeneous. No significant changes apart from total antibody titer were observed during follow-up in each patient. Fine epitope mapping with recombinant FH SCR19-20 containing single amino acid mutations showed significantly reduced binding in 6 out of 14 patients. In most cases, autoantibody binding to residues 1183-1189 and 1210-1215 was impaired, revealing a major common autoantibody epitope. Avidities showed variations between patients, but in most cases the avidity index did not change upon time. Most autoantibodies were IgG3, and all but three presented only with kappa or with lambda light chains. Although the pathogenic role of anti-FH autoantibodies in aHUS is well established, this study shows autoantibody heterogeneity among patients, but no significant variation in their characteristics over time in each patient. The presence of a single light chain in 16 out of 19 patients and the limited number of recognized epitopes suggest a restricted autoantibody response in most patients.


Assuntos
Síndrome Hemolítico-Urêmica Atípica/imunologia , Autoanticorpos/imunologia , Fator H do Complemento/imunologia , Adulto , Afinidade de Anticorpos/imunologia , Autoantígenos/imunologia , Criança , Pré-Escolar , Ensaio de Imunoadsorção Enzimática , Mapeamento de Epitopos , Epitopos de Linfócito B/imunologia , Feminino , Humanos , Imunoglobulina G , Isotipos de Imunoglobulinas , Lactente , Masculino
19.
Trends Immunol ; 36(6): 374-84, 2015 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-25979655

RESUMO

Complement factor H-related proteins (FHRs) are strongly associated with different diseases involving complement dysregulation, which suggests a major role for these proteins regulating complement activation. Because FHRs are evolutionarily and structurally related to complement inhibitor factor H (FH), the initial assumption was that the FHRs are also negative complement regulators. Whereas weak complement inhibiting activities were originally reported for these molecules, recent developments indicate that FHRs may enhance complement activation, with important implications for the role of these proteins in health and disease. We review these findings here, and propose that FHRs represent a complex set of surface recognition molecules that, by competing with FH, provide improved discrimination of self and non-self surfaces and play a central role in determining appropriate activation of the complement pathway.


Assuntos
Apolipoproteínas/imunologia , Proteínas Sanguíneas/imunologia , Ativação do Complemento/imunologia , Proteínas Inativadoras do Complemento C3b/imunologia , Proteínas do Sistema Complemento/imunologia , Apolipoproteínas/genética , Proteínas Sanguíneas/genética , Proteínas Inativadoras do Complemento C3b/genética , Fator H do Complemento/genética , Fator H do Complemento/imunologia , Proteínas do Sistema Complemento/genética , Predisposição Genética para Doença/genética , Humanos , Modelos Imunológicos
20.
J Immunol ; 194(10): 4963-73, 2015 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-25855355

RESUMO

The physiological roles of the factor H (FH)-related proteins are controversial and poorly understood. Based on genetic studies, FH-related protein 5 (CFHR5) is implicated in glomerular diseases, such as atypical hemolytic uremic syndrome, dense deposit disease, and CFHR5 nephropathy. CFHR5 was also identified in glomerular immune deposits at the protein level. For CFHR5, weak complement regulatory activity and competition for C3b binding with the plasma complement inhibitor FH have been reported, but its function remains elusive. In this study, we identify pentraxin 3 (PTX3) as a novel ligand of CFHR5. Binding of native CFHR5 to PTX3 was detected in human plasma and the interaction was characterized using recombinant proteins. The binding of PTX3 to CFHR5 is of ∼2-fold higher affinity compared with that of FH. CFHR5 dose-dependently inhibited FH binding to PTX3 and also to the monomeric, denatured form of the short pentraxin C-reactive protein. Binding of PTX3 to CFHR5 resulted in increased C1q binding. Additionally, CFHR5 bound to extracellular matrix in vitro in a dose-dependent manner and competed with FH for binding. Altogether, CFHR5 reduced FH binding and its cofactor activity on pentraxins and the extracellular matrix, while at the same time allowed for enhanced C1q binding. Furthermore, CFHR5 allowed formation of the alternative pathway C3 convertase and supported complement activation. Thus, CFHR5 may locally enhance complement activation via interference with the complement-inhibiting function of FH, by enhancement of C1q binding, and by activating complement, thereby contributing to glomerular disease.


Assuntos
Proteína C-Reativa/metabolismo , Ativação do Complemento/fisiologia , Proteínas do Sistema Complemento/metabolismo , Matriz Extracelular/metabolismo , Componente Amiloide P Sérico/metabolismo , Humanos , Ligantes , Ligação Proteica , Proteínas Recombinantes
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...